Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
9.
J Econ Entomol ; 116(5): 1885-1893, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37543864

RESUMEN

The Adoxophyes tea tortrix (Lepidoptera: Tortricidae) is a group of leaf rollers that cause enormous economic losses on tea and apple crops. In East Asia, taxonomic ambiguity of the Adoxophyes orana complex (AOC), which consists of A. orana, A. dubia, A. honmai, and A. paraorana, has persisted for decades because of vague diagnostic characters. In this study, differences in the AOC were examined to improve species identification, determine genetic variations, and develop control strategies. Analyses revealed that A. orana comprised 2 lineages, a widely distributed Palearctic lineage and an East Asian lineage that was nested with other Asian species. Genetic divergence of >3% is proposed to confirm the AOC species that would benefit subsequent taxonomic revision. The monophyletic Taiwanese A. sp. with 2.8-4% from other AOC species appeared to suggest it as an independent taxon, and low interspecific divergence between A. honmai and A. dubia of 0.3% indicated possibility of recent divergence or intraspecific variations. Our result further suggested that the Z9-14:Ac ratio of semiochemicals could be a reference for the reblending of pheromone attractants in Taiwanese tea plantations. Moreover, the AOC species appeared to have a tendency of specific geographic distributions, with A. dubia and A. honmai in Japan and China, A. paraorana in Korea, and A. sp. in Taiwan. Maintaining the unique genetic composition of Adoxophyes species in each geographic region and preventing the possible invasions into those AOC-free countries through the transportation of host plants are essential in managing the AOC in East Asia.

11.
Zool Stud ; 62: e11, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168709

RESUMEN

The Modern beekeeping industry is being challenged by the varroan mite and its transmitted pathogens. Various types of Varroa destructor exhibit different levels of virulence toward honey bees, but only the Japanese (J) and Russian (R) types were found to infect Apis mellifera. Type R was more highly virulent against A. mellifera in comparison with type J. Examining the genetic profile of Varroa species is therefore of crucial importance in apiary management. In this study, maternally inherited mitochondrial cytochrome oxidase I (COI) and bisexual nuclear internal transcribed spacer (ITS) sequences of V. destructor individuals from Taiwan were determined. All 168 COI sequences observed in populations obtained from A. mellifera were identical and belonged to type J, with one base difference to that of populations collected from A. cerana; the new type is named 'T type' (Taiwan type). ITS sequences of V. destructor and its sister species V. jacobsoni were identical. A network analysis based on 611 COI sequences compiled from references indicated the presence of 27 haplotypes in V. destructor. Epidemic history and relationship analyses of V. destructor showed that the basal haplotypes were those from A. cerana and many R-extending haplotypes infesting A. mellifera involving amino acid substitutions. Calibration dating based on COI analysis revealed that V. destructor differentiated from its sibling lineage (occurring in Sri Lanka) prior to 1.3 million years ago (Mya). The ancestral haplotype retention and drift in V. destructor that occurred locally during 0.10-0.64 Mya might be relevant to its host A. cerana, which had been isolated geologically. The highly virulent type R was spreading quickly and could gradually outcompete the common and less virulent type J. Type T, being intermediate between types R and J, ought to be studied to better understand the pathogenic mechanism of V. destructor in A. mellifera. Moreover, for areas where type R does not occur, such as Taiwan, quarantine requirements are crucial for reducing invasion risks.

12.
Med Vet Entomol ; 37(2): 371-380, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36734022

RESUMEN

The bloodsucking fly, Stomoxys calcitrans (Diptera: Muscidae), is a cosmopolitan pest that transmits potential pathogens mechanically. We conduct phylogeographic analyses of S. calcitrans to resolve its global population genetic structure for establishing baseline of molecular studies. Results from mitochondrial gene suggested that the major divergence of S. calcitrans predominantly occurred 0.32-0.47 million years ago (Mya) and the subsequent diversifications took place during 0.13-0.27 Mya. The Ethiopian region was deduced as the most likely origin of S. calcitrans and the Nearctic lineages were considered to have originated from Oriental or Palaearctic regions. Our results further revealed that each biogeographic region of S. calcitrans likely maintains its genetic specialty, and yet, those non-monophyletic relationships were possibly caused by ancestral retention, dispersal with mammals, long-distance migration, and the international livestock industries. Moreover, the three highly diverged Ethiopian lineages may be putative cryptic species that require clarification of their veterinary importance. Unravelling the genetic structure of stable fly and preventing gene flow among biogeographic regions through anthropogenic activities are thus pivotal in livestock industry administration, particularly genetic exchange among differentiated lineages that might lead to the consequence of ecological trait alterations.


Asunto(s)
Muscidae , Animales , Muscidae/genética , Filogeografía , Estructuras Genéticas , Mamíferos
16.
PeerJ ; 10: e13240, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35462756

RESUMEN

Background: On the basis of molecular dating, Pleistocene glaciations have been proposed as the major driving force of biota speciation in the Palearctic and the pre-Quaternary origin of Amazonian taxa. However, the major driving factors in East Asia remain unclear. All 16 saturniine species inhabiting Taiwan with congeners of populations, subspecies, or species in East Asia constitute research objects for addressing the mode of speciation because of the repeated formation and disappearance of a landbridge from the Asian mainland to Taiwan during glacial cycles. Methods: The genetic divergences of mitochondrial cytochrome c oxidase subunit I (COI) and 16S rDNA and the nuclear 28S rDNA of the saturniine species from Taiwan and the Asian mainland were assessed to determine the monophyly of each genus and species of Saturniinae. Moreover, 519 saturniine COI sequences of 114 taxa from adjacent East and Southeast Asian populations and closely related species were retrieved from GenBank and analyzed. The differentiation timing and possible origination of the insular saturniines were elucidated based on phylogenetic relationships, haplotype networks, and lineage calibrations. Results: Approximately 90% of intraspecific COI divergence was <2%; all divergences exceeding 2% originated from comparisons between allopatric populations or subspecies. Relationship analyses revealed that multiple introductions likely occurred in insular saturniines and that some East Asian saturniines were paraphyletic as deduced by analyzing endemic insular species. Calibration dating revealed that Taiwanese endemic saturniines split from sibling Asian species 0.2-2.7 million years ago (Mya), whereas subspecific-level and population-level splitting events occurred 0.1-1.7 Mya and 0.2-1.2 Mya, respectively. Moreover, phylogenetic patterns combined with geographical distributions revealed that hill-distributed Taiwanese saturniines are closely related to those from southern China and Southeast Asia, whereas saturniines inhabiting altitudes higher than 1,500 m in Taiwan have siblings distributed in temperate Northeast Asia. Discussion: The Global DNA Barcoding Initiative was successfully applied to study the population genetic structure in species. Most Formosan saturniines are distinct and monophyletic, reflecting the vicariant barrier of the Taiwan Strait; Pleistocene glacial cycles provided opportunities for insular saturniines to experience repeated isolation from and secondary contact with the continental mainland. Each insular saturniine may have evolved with a unique differentiation timing pattern that possibly emerged in the Early, Middle, or Late Pleistocene with these patterns differing from the consistent pattern that occurred in the temperate Palearctic and tropical Amazonian regions. Moreover, multiple migrations or artificial genetic admixtures may have also occurred, as suggested by the coexistence of two divergent lineages in a few Taiwanese saturniines.


Asunto(s)
Manduca , Mariposas Nocturnas , Animales , Filogenia , Mariposas Nocturnas/genética , ADN Mitocondrial/genética , Evolución Biológica , Asia Oriental , Manduca/genética
17.
Insects ; 12(10)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34680689

RESUMEN

Thrips are insect pests of economically important agricultural, horticultural, and forest crops. They cause damage by sucking plant sap and by transmitting several tospoviruses, ilarviruses, carmoviruses, sobemoviruses, and machlomoviruses. Accurate and timely identification is the key to successful management of thrips species. However, their small size, cryptic nature, presence of color and reproductive morphs, and intraspecies genetic variability make the identification of thrips species challenging. The use of molecular and electronic detection platforms has made thrips identification rapid, precise, sensitive, high throughput, and independent of developmental stages. Multi-locus phylogeny based on mitochondrial, nuclear, and other markers has resolved ambiguities in morphologically indistinguishable thrips species. Microsatellite, RFLP, RAPD, AFLP, and CAPS markers have helped to explain population structure, gene flow, and intraspecies heterogeneity. Recent techniques such as LAMP and RPA have been employed for sensitive and on-site identification of thrips. Artificial neural networks and high throughput diagnostics facilitate automated identification. This review also discusses the potential of pyrosequencing, microarrays, high throughput sequencing, and electronic sensors in delimiting thrips species.

18.
Insects ; 12(3)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807992

RESUMEN

The present study demonstrates that the complicated genetic structure of the hilly lineage of the Neolucanus swinhoei complex was driven by its biological features and habitat requirements as well as hindrance by the CMR during periodical Pleistocene glaciations. The results revealed a tendency of geographical differentiation and major and sub- lineage divergences before and after the Riss glaciation, followed by stable population growth during Würm glaciation. At least four refugia were inferred for N. swinhoei during the Riss-Würm glaciations. The ancestral haplotype retention in the cytochrome oxidase subunit I (COI) gene and compensated substitution in 16S rRNA gene is a possible evolutionary scenario resulting in the inconsistent evolution pattern between COI and 16S rRNA gene coupled with the long-distance dispersal of N. swinhoei. Although the CMR did hinder the dispersal of N. swinhoei, its ancestors may have dispersed to eastern Taiwan through the northern and southern low mountains of the CMR before the Riss glaciation. Our finding suggests that the population growth in the Würm glaciation led a dispersal back to western Taiwan, which is contrast to the more common dispersal scenario from western Taiwan to eastern populations proposed in other studies.

19.
Sci Rep ; 10(1): 16508, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-33020593

RESUMEN

The fall armyworm (FAW), Spodoptera frugiperda (Smith), is a major pest native to the Americas. A recent invasion of FAWs from Africa eastward to South Asia, the Indochina Peninsula, and mainland China has received much attention due to the considerable economic losses in agriculture. FAWs can rapidly colonise a new area, likely due to the wide range of host plants, good flying capability, and high egg production. Therefore, a convenient, quick, and accurate tool for FAW identification is urgently required to establish a FAW invasion management strategy. In this study, FAW-specific primers were designed to recognise FAWs on the basis of internal transcribed spacer 1 (ITS1). The results revealed the accurate FAW recognition of the three congeneric species and eight common corn lepidopteran pests, especially at their larval stage. Furthermore, species-specific primers have confirmed their efficacy by using 69 FAW specimens from Taiwan, Thailand, and the United States, with a 96% success rate, excluding 3 decayed specimens. By using the simple, reliable, and convenient FAW-specific primers, a pest management programme can be developed not only to reduce sequencing costs and experimental time from 2 days to 4 h, but eradicate the FAW as soon as it enters a new area.


Asunto(s)
Reacción en Cadena de la Polimerasa Multiplex/métodos , Spodoptera/genética , Agricultura , Animales , Especies Introducidas , Larva , Control de Plagas , Reacción en Cadena de la Polimerasa/métodos , Especificidad de la Especie , Spodoptera/patogenicidad , Zea mays/parasitología
20.
J Econ Entomol ; 113(6): 2890-2899, 2020 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-32880396

RESUMEN

Pear psyllids are major pests and the causal agents of pear decline disease in orchards. In the past two decades, their outbreaks have raised issues pertaining to invasions and taxonomic identification of the dimorphic Cacopsylla chinensis (Yang and Li) in East Asia. The present study elucidated, as an aid to quarantine management, the invasive origins, differentiation history, and putative gene flow and hybridization between C. chinensis and its sibling species Cacopsylla jukyungi (Kwon). Analyses revealed that the ancestors of C. jukyungi might have diverged from C. chinensis approximately 3.5 million yr ago (Mya) and that differentiation between C. chinensis lineages I and II probably occurred 1.5 Mya. The known overlapping distribution of C. chinensis and C. jukyungi in northeastern China and the two C. chinensis lineages in the Bohai Rim region and Taiwan could be attributed to recent population expansion after the Last Glacial Maximum and/or anthropogenic activities. Analyses of the nuclear gene demonstrated that frequent gene flow between the two C. chinensis lineages and the paraphyletic relationship between C. chinensis and C. jukyungi might be caused by incomplete lineage sorting or hybridization events. On the basis of the current distribution, it is evident that C. jukyungi is not present in middle-southern China, whereas C. chinensis is not distributed in Japan and Korea. Preventing new invasions of Cacopsylla psyllids among geographic regions through the transportation of pear scions is thus pivotal in East Asia, particularly for the possible genetic exchanges among differentiated lineages after secondary invasion events.


Asunto(s)
Hemípteros , Animales , China , Asia Oriental , Flujo Génico , Hemípteros/genética , Japón , Cuarentena , República de Corea , Taiwán
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...